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THEORETICAL NOTE

Parallel Psychometric Functions from a Set of Independent Detectors
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Consider combining several elementary detectors by the extreme decision
rule of responding "no" only when all elementary detectors respond "no" and
"yes" otherwise. The question raised is: Which psychometric functions for the
detectors have the property that the resulting psychometric function is simply
the original function displaced in the logarithm of the physical scale? The
answer is p(I) = 1 — e~M, a, 0 > 0.

Detection data are often assumed to arise
by combining the decisions of a number of
more elementary detectors. One extreme as-
sumption is that the elementary detectors are
binary and the final decision is affirmative if
and only if at least one detector reports a
detection. Obviously a number of other
decision rules are possible—one might, for
example, require some fraction of the ele-
mentary detectors to report detection. Such
rules are more flexible and may prove more
prudent or realistic in particular detection
situations. Smith and Wilson (1953) have
analyzed such systems in some detail. The
appeal of the extreme rule is its simplicity, and
so it is not surprising that discussions of this
extreme rule occur in many different areas as
a kind of null model. In certain classical
psychophysical experiments, for example, the
influence of signal duration or area on detec-
tion can be treated in this way, as can complex
signals composed of one or more separate
parts.

The psychometric functions observed in
such experiments exhibit a surprisingly simple
relation. Consider, for example, two different
signal durations. Presumably the shorter
duration involves fewer elementary detectors
than does the larger one, but when one mea-
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sures the psychometric function at each dura-
tion as a function of log intensity, one usually
finds that both psychometric functions have
essentially the same shape. That is to say,
these psychometric functions are nearly
parallel, the one simply being the other dis-
placed to the left or right by an amount that
is a function of the parameter value being
varied—in this example, signal duration.

Such results were interpreted by Green,
McKey, and Licklider (1959) as unfavorable
to the putative model for the following reason.
Let p denote the elementary detection prob-
ability, and let pn denote that of a system
involving n independent elementary detectors.
Assuming the decision rule stated, it is obvious
that

pn = 1 - (1 - P)n. (1)

Since the relation between pn and p is non-
linear, it was argued that the shape of the
psychometric function must change as n
varies. Certainly this is true for a variety of
simple psychometric functions, and if n is
large enough, this change should be easily
noticed, even in empirical data.

However, as Quick (in press) has pointed
out, the function

p ( I ) = 1 - a > 0, ft > 0 (2)

has the property that pn in Equation 1 is of
the same form provided I is multiplicatively
displaced by a function of n. Thus, on a
logarithmic scale of intensity, p(I) and pn(I]
are parallel. The argument is simple:

Pn = 1 - (1 - P)'

So the function given in Equation 2 has the
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property that has been observed empirically.
The main purpose of this note is to prove that
it is the only function with the property that
for some function a on the positive integers
and some cumulative probability function p,

Pn(I) = (3)

Before deriving this result and commenting
on it, we digress briefly on two points. The
first is the issue of false alarms. If we denote
by « the false-alarm rate of an elementary
detector, then by Equation 1, the false-alarm
rate of the system is 1 — (1 — «)" which,
when e is small, is approximately ne. It is
clear that if the system has a large number of
detectors, its false-alarm rate will be modest
only if the false-alarm value of each detector
is extremely low. This is one reason that we
view the model as an extreme one.

The second point to observe is that Equation
2 has appeared in the detection literature at
least as early as Brindley (1963). He assumed
that / is proportional to the number of quanta
impinging on an elementary detector, that
there are n independent detectors, and that m
quanta are required to excite any one of them.
He claimed to show—-though we believe the
argument wrong (see Appendix)—that for
large n the process approaches that of Equation
2 with ft = m and a = n/ml

The same mathematical problem has been
treated in a wholly different literature, namely,
that concerned with the distribution of the
largest of n identically distributed random
variables. There it is shown that Equation 2
is one of three possible forms for the
asymptotic distribution. The key paper is
Fisher and Tippett (1928); it is summarized
in Gumbel (1958) and Feller (1966). Feller's
discussion is considerably more careful con-
cerning the conditions under which the solu-
tion to the corresponding extremal problem is
unique. Yellott, who has been working on a
related problem in choice theory (Note 1),
brought this literature to our attention and
showed us how to use Feller's results.1

1 The evolution of the result reported here is as
follows. We first proved the theorem under a
restriction of the function a(n). Krantz then sug-
gested that a somewhat weaker hypothesis would
do, and we proved the results under his condition.
Later, we read the draft of an article by Yellott
(Note 1), in which he proved a related result with-
out assuming anything about the function a(n),
but assuming that p is strictly increasing and con-
tinuous. This brought to our attention the close
connection of our problem to that of the statistics

Form of the Psychometric Function

THEOREM. Assume that the psychometric
function p is a (cumulative') distribution func-
tion on the nonnegative reals (i.e., it is increasing
and onto [0, /]) and that Equations 1 and 3 hold,
then

p(I) = 1 - e~a", a > 0, (3 > 0. (2)

Proof. From Equations 1 and 3,

Let
g(x) = 1 - #(!/*), (4)

then it is easy to see that g is a distribution
function, that gn is the distribution of the
largest of n independent random variables,
each with the distribution function g, and that

g(x)n - [1 — £(!/*)]* (Equation 4)

= 1 — #n(l/*0 (Equation 1)
= 1 — p\_a(n)/x~] (Equation 3)

= g[x/a(w)]. (Equation 4)

So if Xn is a random variable with distribution
g", then Xn/a(w) has the distribution

= «(*).

According to Feller (1966, pp. 270-271), if the
distributions of Xre/a(w) tend to a distribution
g not concentrated at 0 — in this case, they all
have the same distribution g — then

Thus,
g(x) = a > 0, p < 0.

= 1 _ e-a(\II)P

- p

Application

If we perform an experiment involving two
values of n, say n\ and «2, and find the two
intensities, Ji and /2, that produce the same
probability of detection, it follows from

pn=\- e-*

of extremes. In discussing these matters with
Yellott, the question was raised whether any as-
sumptions on p were needed beyond its being a
cumulative distribution function. Shortly after
that, Yellott came up with a proof for his problem
which, slightly adapted, served to prove the result
we give here.
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log

that

and so

For a variety of cases in vision and audition
we know that doubling the duration of the
stimulus — presumably rendering «i/»2 = 2 —
is compensated by a stimulus change of from
1.5 to 3 db (that is, 72//i from 2* to 2). Thus,
we estimate ft in the range from 1 to 2.

Note that it is important in estimating ft to
measure intensity or energy rather than some
quantity, such as pressure, which is propor-
tional to 7*. In such cases the estimated
value of the exponent will appear to be twice
as large since, if x^«- 1 then I^^x^.

Two Devices Displaying This Property

Suppose a Poisson device produces counts
with an intensity parameter n = a/*3, the
device is monitored for an interval of time A,
and it reports a detection if at least one count
occurs within the interval. The probability
of no counts is e~^, so

P (detection) = 1 — e~"4

= 1 _ e-Aa//S.

Such a device and the given decision rule
yield the required psychometric function.

The application of such a detection model is
interesting. First, it seems likely that such a
device is plausible only for brief signals, since
it assumes that a single count is taken as
evidence for the occurrence of a signal. Second,
if one envisions this process as applying when
signal duration is varied, then A is probably not
varied because it would eventually generate
high false-alarm rates. Rather the outputs of
a set of independent monitors are combined,
and the time-intensity trade is generated.
The exact form of that trade depends on ft,
but it is possible to predict trades that are not
equal-energy contours.

As Wandell has pointed out to us, the proof
of the theorem suggests a second decision
mechanism yielding Equation 2 as the psycho-
metric function. Suppose the system notes
which of several channels appears to be active,
calculates a statistic for each, and compares
the smallest value with a criterion (i.e., selects
the largest among the reciprocals of the
statistics). If n channels are active and Yn

is the smallest statistic, and if there are con-
stants a(n) such that o(w)YM has a distribution

that tends to p, then p is of the form of
Equation 2.

Comparison with Other Psychometric
Functions

On the theoretical side, we have shown that
Equation 2 is the only psychometric function
having the property that if one of n detectors
with that psychometric function triggers a
response, the resulting psychometric function
is exactly parallel (on a logarithmic axis) to
the elementary one. Is this property of any
empirical value? Is it possible to determine
whether empirical data obey this rule? The
answers to such questions depend on what
alternative psychometric functions are con-
sidered and the number of elementary detectors
that one presumes are combined. It is im-
possible to give a general answer to the ques-
tion, but the following relations provide some
insight into the nature of the problem by
showing how to compute the expected devia-
tion for whatever alternative psychometric
function one wishes to consider.

Let p(I) be the psychometric function given
in Equation 2. Let some other psychometric
function be given by p(7), and denote the
difference between them by 7(7) =/>(7)— p(7).
The following will be simplified if we omit the
argument 7 and denote p(I) = p, p(7) = p,
and 7(7) = 7. Consider

/>„ = 1 - (1 - p}» = 1 - (1 -_p - 7)"

(«- 1) M ,„_!, ,,_w_ ( l _ p ) » i(_7)'

• • • Binominal expansion,
Pn = I - (1 - p)".

Thus,

Pn ~ Pn\ < «(1 — p)""1^!

, «(« ~ !) /, _ N » - L . . 2 . . .

2!

<»H+f]

Although the bound may be generous, it does
permit an estimate of the error. If one de-
sires the error for the n detector case to satisfy
0 < e « 1, then it is sufficient that

en\y[ - 1 < £,

that is,
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and so

\P-P\ = \y\ < (5)

is sufficient.
A difficulty in applying this result is that

one often does not know n; in fact, it is usually
estimated from the data. If a situation can
be arranged where n is known, such as n
bursts of a signal or n dots in a visual field,
then the requirement given by Equation 5
can be tested.

Summary

Given an extreme decision rule, namely
respond affirmatively when at least one
elementary detector reports a detection, we
show that the condition stated in Equation 3
yields Equation 2 as the only possible psycho-
metric function. Some rough bounds on the
parameters are given. Two mechanisms that
produce such a psychometric function are
presented, and the relation between this
function and some other psychometric func-
tions is derived.
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APPENDIX

THE FAILURE OF BRINDLEY'S ASYMPTOTIC FORMULA

Brindley (1963) claimed to show that the latter,

Pn = 1 - {[1 + I + P/21 <^m/ml = 1 -
+ • • • + / /{m 1) -Je }" ancj for j-jjg forrner|

approaches, presumably uniformly,

as n becomes large. This is true for m = 1,
since both equations reduce to 1 — (e~z)n. It
is also true for fixed m and large / since
pn—*l, but of more practical interest is the
convergence for small values of /, and hence
measurable pn. Keeping only first-order
terms in I, we need only compare the terms
within the brackets of the two equations, for

Raising these to the nth power and again re-
taining first-order terms yields, respectively,

1 - nlm/m\ and 1 - nP,

and these are simply not the same growth in
/, even for m = 2; the divergence is worse for
m = 3 or greater.
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